
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021 1
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Challenging Conditions
Viachaslau Kachurka1, Bastien Rault2, Fernando Ireta Muñoz3, David Roussel1, Fabien Bonardi1,
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Abstract— Real-time globally consistent GPS tracking is critical for
an accurate localization and is crucial for applications such as
autonomous navigation or multi-robot mapping. However, under
challenging environment conditions such as indoor/outdoor transi-
tions, GPS signals are partially available or not consistent over time.
In this paper, a real-time tracking system for continuously locating
emergency response agents in challenging conditions is presented.
A cooperative localization method based on Laser-Visual-Inertial
(LVI) and GPS sensors is achieved by communicating optimiza-
tion events between a LiDAR-Inertial-SLAM (LI-SLAM) and Visual-
Inertial-SLAM (VI-SLAM) that operate simultaneously. The estima-
tion of the pose assisted by multiple SLAM approaches provides
the GPS localization of the agent when a stand-alone GPS fails. The
system has been tested under the terms of the MALIN Challenge,
which aims to globally localize agents across outdoor and indoor environments under challenging conditions (such as
smoked rooms, stairs, indoor/outdoor transitions, repetitive patterns, extreme lighting changes) where it is well known
that a stand-alone SLAM will not be enough to maintaining the localization. The system achieved Absolute Trajectory
Error of 0.48%, with a pose update rate between 15 and 20 Hz. Furthermore, the system is able to build a global consistent
3D LiDAR Map that is post-processed to create a 3D reconstruction at different level of details.

Index Terms— Computer vision, Simultaneous localization and mapping, Sensor fusion, Indoor navigation, Embedded
software, Terrain mapping

I. INTRODUCTION

SLAM (Simultaneous Localization And Mapping) has been
widely studied in the fields of robotics and computer

vision. The robustness and accuracy of a SLAM method in
unknown dynamic environments can hardly be achieved using
only one sensor. The paradigm between computational power
and availability of new sensors have lead to obtain large-scale
dense maps by developing Multi-SLAM methods that coop-
erate to improve localization and to speed up registration of
a detailed 3D representation of the environment. Applications
such as autonomous multi-robot (MR-SLAM) navigation [1]–
[3], parallel indoor/outdoor 3D registration [4], and multi-
session mapping [5], [6] are very active fields in the literature.

MR-SLAM and multi-SLAM techniques focus mainly on
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two issues:

1) How the poses and the map are shared between the
systems.

2) How the trajectories and the global map are corrected
and updated.

By taking the main advantages of sensor fusion while per-
forming SLAM, we propose a Wearable Cooperative SLAM
system (WeCo-SLAM). Although Wearable, this system can
easily be adapted to mobile robotics. The main contribution of
the system is its ability to perform two complementary SLAM
approaches simultaneously, while communicating optimization
events (such as loop closures and global pose adjustment) for a
real-time 6DOF pose estimation process. Each SLAM method
is improved by performing an independent tightly-coupled
sensor fusion (LI-SLAM [7] and VI-SLAM [8], respectively).
Finally, a global loosely-coupled sensor fusion between the ob-
tained poses and the registered GPS positions allows to predict
valid GNSS coordinates in indoor environments. This strategy
allows the system to maintain a valid trajectory under arbitrary
and unpredictable challenging conditions such as smoke-filled
or dark rooms, indoor/outdoor transitions, extreme lighting
conditions or even agent-crawling. Our system is an exten-
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(a) Dark environment (b) High luminosity (c) Narrow passages (d) Smoke (e) Crawling (f) Discordance

Fig. 1. Different Challenging situations experimented during real-life-like scenarios of MALIN Challenge.

sion of previous works [9], [10] that have been proposed
and tested under the environment constraints of the MALIN
Challenge [11], which aims to localize emergency response
agents in real-time under highly dynamic environments when
GPS signals are missing or just partially available and also to
provide a detailed map of the environment afterwards.

Sensor fusion approaches can be seen here as strategies that
perform localization by jointly minimizing the error function
between correspondences from different measurements while
generating an aligned map. Fusion can be tightly-coupled or
loosely-coupled based on the dependency between the sensors
for pose estimation. In practice, Bayesian approaches use one
of the sensors (e.g. an inertial measurement unit, IMU) to
predict the pose whereas other sensors, camera(s) or LiDAR,
are used to correct this estimation. The estimated pose is used
for merging 3D points (e.g. LiDAR scans) to generate a single
global consistent map.

Furthermore, pose estimation from multiple sensors can
also be obtained by optimizing the 6 DOF pose over two
(or more) individual SLAM approaches that are performed
simultaneously to build a common 3D map. Depending on
how the 3D map is built, these strategies can be classified here
as collaborative or cooperative SLAM. The main difference
between them relies on the contribution of each SLAM for
performing both, odometry and 3D mapping.

Collaborative SLAM approaches [12]–[20] perform local-
ization and mapping with an increased number of sensors (by
using same SLAM approach and sensor-type) while optimiz-
ing over individual 3D maps to build a global map. These
approaches are mostly employed for robot team mapping,
where identical robots share and update the same global 3D
map from different locations and simultaneously correct the
poses of all robots over time. Moreover, in autonomous driving
applications, the global mapping aims to match and merge
camera-based and LiDAR-based maps either by performing
coarse alignments between them or by correlating the extrin-
sics between the sensors. The corresponding feature points are
put into bundle adjustment [21] to refine all camera poses.

Cooperative SLAM strategies [9], [10], [22]–[25] benefit
from the complementarity of visual, LiDAR and/or IMU
sensors. Indeed, a stand-alone SLAM approach might not be
robust enough to maintain an accurate pose under arbitrary
conditions. The 3D maps of each SLAM are not necessarily
shared but their global alignment is assisted by the pose
of each SLAM. Cited cooperative methods achieved better
localization performance by combining visual and LiDAR

approaches, where one approach can compensate the lack of
robustness of the other while estimating the pose. For instance
Shao et al. [22] compensate possible fails of LiDAR SLAM
with the assistance of Visual SLAM, whereas Balazadegan et
al. [23] initiate pose estimation with Visual SLAM then the
pose is refined using the Generalized ICP over LiDAR scans.
Zhang & Singh [24] follow the same principle as [23], with
IMU predictions for visual-inertial odometry. This method
allows to partially or totally bypass failure modes of one sensor
and combine the rest to maintain robustness, by introducing the
concept of reconfigurable pipeline between range, vision and
IMU measurements. Zuo et al. approach [25], [26] performs an
online multi-sensor calibration for maintaining accuracy and
robustness. W.r.t to other cited methods, Zuo et al. propose a
tightly coupled fusion of all IMU, visual and range data, but
it lacks a loop closure detection stage. Other cited methods
are then considered as loosely coupled since poses can be
predicted by IMU and then corrected by either visual or
LiDAR SLAMs.

To the best of our knowledge, real-time cooperative SLAM
under challenging environmental conditions has received little
attention. Hence, a method that propagates optimization events
between two different SLAM architectures is proposed here.
The 3D map is built using an improved version of LI-
SLAM [24], [27] while the final pose is assisted by a VI-
SLAM [8], [28]. Besides, a RANSAC optimization process
on temporally paired positions ensures registration of SLAM
and GNSS reference frames. A Kalman filter (KF) fuses
coordinates retrieved in the global frame and predicts the
position in GNSS-denied situations.

The key contributions of this paper are:
1) A new communication strategy of optimization events

between two independent SLAM approaches.
2) A GPS coordinates prediction method using sensor

fusion.
3) An optimized real-time LiDAR-based SLAM approach

(20Hz).
This paper is organized as follows: Section II introduces

the conditions and constraints, which bound the considered
agent localization problem. Section III presents a general view
of our proposal, both in terms of hardware and software.
Section IV further develops the idea of SLAM cooperation,
detailing our technical choices for the used approaches, as
well as the fusion of the results. Then, Section V shows the
obtained results while performing real-time localization using
our cooperative SLAM approach and a post-processing offline
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3D LOD reconstruction mapping. Finally, the paper ends with
a conclusion.

II. AGENT LOCALIZATION PROBLEM: RELATED WORK

The agent localization problem was first formulated in [29]
as a problem of accurately localizing military or emergency
response agents in an unknown GNSS-denied environment.
This problem formulation covers 16 essential user require-
ments, including: localization accuracy; physical robustness;
real-time map building capability in unknown environments;
weight, cost and energy consumption efficiency.

While none of the up to date solutions have strictly met
all the 16 requirements, a survey on localization and indoor
positioning systems (IPS) for emergency responders [30]
counts more than 30 IPSs developed by 2017; and a meta-
review of surveys [31] conducted in 2019 describes more
than 150 articles concerning “indoor positioning OR indoor
localization”. Our approach can be classified as ”device based”
and ”infrastructure free” as it uses its own embedded sensors
without the need of deploying dedicated beacons.

This is also the scope of the MALIN challenge of the
French National Research Agency, which aims to provide
a real-time indoor localization solution without using exist-
ing infrastructures such as Wi-Fi or cellular networks under
challenging conditions. Such conditions are also known as
“non-cooperative environment” and are described in [32] – as
an environment where the conditions induce failures of both
sensors and software. Some of the encountered difficulties are
illustrated in Fig. 1. Among these we can find difficult lighting
conditions (1a & 1b), narrow passages associated with erratic
movements (1c & 1e), smoke (1d), and situations inducing
contradictions between sensors measurements or algorithms
(1f).

Therefore, among the aforementioned constraints and re-
quirements, various issues can be identified, such as:
• Real-time tracking and mapping – the current localization

should be available (and possibly transmitted to con-
trol center) in real-time, whereas complete localization
trajectory and reconstructed map can be retrieved and
processed later.

• Transitions between indoor and outdoor environments
with potentially very different scales, therefore imposing
difficulties on mapping and data management.

• Tracking failures due to erroneous or missing data,
human-specific motion or environment factors.

• Efficiency in cost, weight, volume and energy consump-
tion.

III. SYSTEM DESIGN AND ARCHITECTURE

The system presented hereafter is the result of an iterative
process. So even if we only present the most recent prototype,
several relevant conclusions, drawn from the testing of previ-
ous prototypes, are also mentioned. Our localization system
can be described as a wearable multi-sensor, multi-SLAM,
cooperation-based, real-time localization system. The study of
this paper has been validated on, but is not limited to the
hardware described in Fig. 2.

Neousys
POC-545

Velodyne
VLP-16 

Velodyne
VLP-16 

Texense
RAD6-M
Texense
RAD6-M

Intel D-
435i

Navilock
NL-8004U

IR 
Illuminator

Fig. 2. Tactical waistcoat hardware configuration.

The hardware setup is installed on a tactical waistcoat,
where the LiDAR, camera and inertial sensors are placed
on the right shoulder, the controller on the back with the
GNSS antenna, whereas the battery and phone-based UI are
placed on the front. The autonomy of the system is up to 1
hour while running SLAM. The embedded PC used to run
both SLAMs and fusion is a Neousys POC-545, 3.35 GHz
CPU clock with 12 cores and 16 GB memory. The weight of
the overall system (tactical waistcoat, embedded PC, frame,
cables, sensors, battery) is just under 9 kg.

The following paragraphs describe the choices we made in
terms of hardware and software.

A. Sensors

1) Camera: Situations of total darkness lead us to consider
the use of an on-board illuminator associated with cameras.
The conditions of smoke and unknown lighting eliminate the
choice of a conventional RGB-camera. Most types of smoke
(either artificial dry smoke [33] or several types of “natural”
smoke [34]) are transparent to infrared imaging sensors. An
obvious choice would be to use SWIR (0.9–1.7 µm) cameras
which are relatively expensive, but these are also sensitive to
the absence of lighting [35] and therefore require the use of an
expensive illuminator both in terms of price and consumption.

Our final choice is an Intel RealSense sensor D435i, which
supplies two NIR (0.7–1.0 µm) cameras (enabling stereo vi-
sion), and an embedded IMU (enabling visual-inertial ap-
proaches) associated with a NIR light emitter composed of two
underpowered diodes (with a power demand ≤ 4 W). Even if
NIR cameras do not perform as well as SWIR cameras in
smoke, our tests have shown the ability to extract features
from their images for objects up to 4 m away.

Intel’s D435i extrinsics parameters between camera(s) and
internal IMU have been calibrated using Kalibr [36].

2) LiDAR: The rapid and non-planar movements of the
wearer require the use of a 3D LiDAR to obtain a robust
pose with a LiDAR-based SLAM. In indoor environments,
LiDAR captures data ranging mostly below twenty meters.
The vertical aperture of the sensor must be large enough for
the algorithm to detect geometric features. This is why we opt
for the widely used LiDAR, VLP-16 Puck from Velodyne,
which has a 30° vertical aperture.



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021

We also tried the RS-BPearl from Robosense with a 90°
vertical opening. This LiDAR is more suitable on the stairs,
but less in hallways, where it only sees walls and ceiling. Since
camera-based SLAM mostly handle stairs well, but encounter
difficulties in long corridors, we chose the VLP-16 LiDAR.

3) Inertial measurement units: The system is intended to be
worn by a person, so we have chosen an inertial unit suitable
for low frequencies. The RAD6-M from Texense, based on gas
technology, is designed for low frequency measurements. Its
low noise and its bandwidth are suitable for this application,
considering the nature of human movement.

4) GNSS Unit: GNSS unit is a Navilock NL-8004U Multi
GNSS receiver used with Galileo, GPS and Glonass constella-
tions at an update rate of 1 Hz and a Circular Error Probability
(CEP) of 2.5 m.

B. Software

On one hand, we chose a LiDAR-based SLAM in order
to obtain 3D maps as dense as possible that we can use for
the cartography post-processing. However, denser 3D maps
represent a large volume of data which can lead to issues
regarding the real time constraint for such SLAM. On the
other hand, we chose to use a Visual SLAM as it can provide
robust loop closures and relocalization based on Bag of Words
signatures [37]. Visual SLAMs also use 3D maps (which are
usually associated with keyframe poses), but these maps are
relatively sparse compared to LiDAR 3D maps and do not
provide additional 3D information. We therefore chose not to
use them for the final cartography.

Due to their intrinsic nature, both SLAMs can have dif-
ficulties in specific situations, such as narrow places with a
LiDAR-based SLAM featuring a 30° vertical aperture which
prevents from picking up 3D points on the floor or ceiling, thus
impacting the vertical motion estimation. Regarding the Visual
SLAM, the main difficulty comes from the visual features
tracking: either lack of features which can occur in long
hallways with uniform walls, floors and ceilings, or erroneous
features such as a moving shadow on a wall (see Fig. 1f)
or stationary points in the field of view. Since both SLAMs
can fail in certain situations, we established a cooperation
framework (described in Fig. 3) in order to:
• Fuse both SLAM poses with GNSS data (when available)

into a single UTM1 pose.
• Propagate Loop Closure events from Visual SLAM to

LiDAR-based SLAM.
• Provide a recovery pose after tracking failure of either

SLAM in order to maintain current navigation trajectory
and map.

The following paragraphs describe the internals of each
SLAM and the following section further develops the coop-
eration framework. As mentioned previously, the multi-sensor
data are processed with corresponding software modules.

1) InnoSLAM: InnoSLAM is a LiDAR-Inertial SLAM based
on the Kitware [38] implementation of LOAM [27]. It was
first designed for non-real time applications and relies on

1Universal Transverse Mercator
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3D Features Extraction

Visual SLAM
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Failure Recovery & Loop Closure

Pose Estimation

Camera
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Data fusion T(x)

Pose Estimation

Global Map Optimization

Fig. 3. The general scheme for our system architecture. Sensors data
are processed by two semi-independent SLAMs. The relative positioning
is then fused with existing GPS data by Kalman filter.

the comparison of 3D features between consecutive point-
clouds. Geometric information are first extracted by looking
at the roughness of successive points along each channel of
the LiDAR. Points are classified into three groups: planar,
edge and unused. Each category of feature is matched with
the corresponding category of the previous pointcloud by a
(Levenberg-Marquardt) LM-ICP [39] algorithm, providing a
first estimation of the motion between two measurements.
Features are then matched in the same way to the internal
feature map. This motion refinement step not only greatly
reduces the drift, but also keeps a globally optimized map
updated with new features in each pointcloud. Real time
SLAM is obtained by reducing computation time. To do so,
apart from using multithreaded code, the map is constantly
filtered with a varying density depending on whether the
system is in a wide or narrow environment. The map also
has a fixed size and moves with the system. Points, that are
too far away, are deleted. This is described in detail in one of
our previous contributions [9].

The quality indicators described in section IV-D and the
cooperation with VI-SLAM allow new strategies to improve
the performance of InnoSLAM. One strategy we have imple-
mented is to reset the local map when InnoSLAM has a bad
quality indicator whilst VI-SLAM maintains a good quality
indicator. This keeps the global map consistent and error-free.
Another new strategy consists in relocating InnoSLAM with
previously recorded pose whenever VI-SLAM sends a loop
closure event. This can be used to detect whether InnoSLAM
drifted or not, and if it did, we can rework the map to keep
its consistency.

2) Visual SLAM: Challenging conditions impose several
constraints onto our choice of a Visual SLAM. Unknown light
conditions, which can be partially corrected by automatic gain
control, prevent accurate photometric calibration and thus the
usage of a direct visual SLAM (such as DSO [40] or ROVIO
[41]). The real-time processing condition primarily implies a
sparse SLAM in the context of moderate resources – therefore,
our choice is among indirect sparse SLAMs.

A monocular vision-only SLAM would be very fast, but has
an undetermined scale factor (each SLAM run yields a new
map and trajectory scale). This can be solved either by using
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stereo or 3D camera or by combining with IMU measurements
– thus by applying a stereo, mono-inertial or stereo-inertial
SLAM.

Among other desired properties, robustness is required
to cope with eventual tracking failures. Therefore we need
loop closure and failure recovery mechanisms. Feature points
usage can provide a reliable recognition of previously visited
locations using popular state-of-the-art bag-of-words (BoW)
approaches [37], providing a possibility of relocalization or
loop closure.

To fullfill the characteristics described above two fam-
ilies emerge as popular choices: ORB-SLAM [42], ORB-
SLAM2 [42] and more particularly its visual-inertial succes-
sors VI-ORB-SLAM [43] and ORB-SLAM3 [44] as well as
VINS-Mono [28] and its successor VINS-Fusion [8]. All of
these implementations are ”optimization-based”: they use a
form of bundle adjustment to solve a non-linear optimization
problem in order to minimise relative or absolute errors
between estimated position and observed data. The previous
iteration of our visual SLAM (as described in [9]) was based
on VI-ORB-SLAM [43].

Both families can employ visual-inertial data, provide some
form of failure recovery and error correction strategies, and
are reported to be real-time SLAMs. But the biggest differ-
ence between them lies in the keyframe management during
optimization: ORB-SLAM family algorithms try to optimize a
full keyframe connectivity graph, which can take considerable
time in long running scenarios; while VINS family algorithms
optimize only a sliding window of recent keyframes, thus
employing “marginalization” [45]. While first type of op-
timization provides better precision, the second allows real
time constraints even in long running scenarios. However,
marginalizations can lead to pose drift.

Our tests on the aforementioned prototype with the same
pool of resources show that using VI-ORB-SLAM along with
LI-SLAM on the same embedded PC requires too much
resources to respect real-time processing boundaries; while
both monocular visual-inertial versions of VINS can respect
the same boundaries. The marginalization precision tradeoff,
found in VINS family algorithms, can be compensated by
SLAM cooperation and data fusion. VINS family also has
a computational benefit of tracking GFTT [46] points using
an optical flow approach instead of tracking feature points
like ORB-SLAM does with ORB [47] points. Such tracking
approach, although more primitive, is faster and less sensi-
tive to repetitive patterns. However, VINS-Fusion also uses
BRIEF [48] feature points to create keyframes used for loop
closures.

IV. SLAM COOPERATION AND DATA FUSION

Fig. 4 describes the main blocks in our localization system.
Main stages can be identified: 1) Initial alignment of the
trajectories of the two SLAMs; 2) Fusion of the poses between
LI-SLAM and VI-SLAM while integrating IMU data, that can
be used as an external pose when an individual (or both)
SLAM method fails; 3) Tracking quality indicators of each
SLAM used to merge their results; 4) Global fusion with GPS
data.

Online SLAMs fusion

GPS

Feedback to LiDAR SLAM

…
Visual SLAM:
Relocalization /
loop closure
indicator, LCV(x)

GPS registration & fusion

Correction in UTM space

Feedback to Visual SLAM

…

Localization
output

IMU

LiDAR SLAM:
Relative 6D-pose
Transformation TL(x)

Prediction in relative space

Visual SLAM:
Relative 6D-pose
Transformation TV(x)

Initial SLAMs registration

Relative trajectories
alignment

Prediction in UTM space

LiDAR SLAM:
Transformation
quality evaluation, QL(x)

Visual SLAM:
Transformation
quality evaluation, QV(x)

1

2

3

4

Fig. 4. Multi-SLAM cooperation scheme. Green blocks designate input
data, yellow blocks - output data, blue blocks - processing modules.

A. Initial SLAMs registration

The relative transformations between LiDAR and Visual
SLAM, TL(x) and TV (x), respectively, are provided at first
in their own spatial and temporal reference frames, which are
determined during the system’s initialization stage.

Extrinsics between LiDAR and the camera are estimated by
aligning trajectories using Horn’s method [49]. Particularly, the
alignment is performed at the beginning of each mission once
each independent SLAM method has reached an established
threshold distance (estimated up to 10 m during our tests). The
alignment between absolute poses is achieved by minimizing
the distance between correspondences found by the closest
timestamps. The resulting transformation is used for estimating
relative pose between LI-SLAM and VI-SLAM.

B. Online SLAMs Fusion

With this first alignment, estimated positions and orien-
tations from both SLAMs are properly conditioned in the
same reference frame and can be fused with the IMU data
by a Kalman filter method. For this purpose, we use an Error
State Kalman Filter (ESKF) for a robust pose estimation as
described in [50] and inspired from [51]. Compared to a
traditional Kalman filter or Extended Kalman filter option,
the state vector is not populated with the systems parameters
to estimate, but the errors associated to each parameter and
spawned by following prediction and correction steps. Such
change involves an additional step in the algorithm after
correction in order to apply the estimated error to the system
state vector and the error state vector is then reset. This
adjustment is said to be more efficient because an error state
vector is generally small and values to estimate are closer to
the linearization point involved by the model [50]. Our error-
state vector is defined as x̃ = [ p̃ᵀ δθᵀ ṽᵀ b̃ᵀ

a b̃ᵀ
g ], where

p̃ᵀ and ṽᵀ are the errors in position and velocity in the global
frame, δθᵀ is the angular error expressed as a quaternion in the
global frame, and b̃ᵀ

a(t) and b̃ᵀ
g(t) are the accelerometric and

gyroscopic biases errors. This vector is estimated at each IMU
acquisition using 4th order Runge-Kutta numerical integration,
and then corrected at each SLAM iteration.



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021

C. GPS Registration and Fusion

Positions and orientations estimations, made in the relative
space, are fused with GPS data. This processing block implies
two steps.

First, positions from SLAMs fusion are projected onto
latitude-longitude plane according to the extrinsic rotation
parameters from the initial SLAMs registration (section IV-A).
Therefore, this projection is highly dependent on that initial
calibration although a slight rotation offset can be compensated
later by the Kalman process. Positions from SLAMs fusion
blocks are then temporally paired with coordinates given by
the GPS, and a RANSAC process is performed on these pairs
to estimate a transformation between the relative map (map
used by the SLAMs fusion process) and the UTM reference
(global map associated to the GPS coordinates).

Then, a Kalman filter is applied on the positions estimated
in the global map. The considered state vector here includes
position and heading in the 2-dimensions UTM map x̃t =
[x̃, ỹ, h̃]T . Prediction is achieved with estimated positions from
the SLAMs and corrected according to GPS data. Quality of
the GPS data is evaluated thanks to the geometric dilution of
precision measure given by the GNSS. This indicator is used as
a weighting factor in the Kalman correction step and GPS data
are even rejected if dilution is higher than a given threshold.
Covariance matrices, implied in these processes, are weighted
by quality indicators detailed below in order to benefit from the
most reliable source of information and weaken data tainted
with error and uncertainty. In GNSS-denied situations, classic
GPS-provided correction is not possible, and quality indicators
are used to decide the correction step.

Thus, we employ the aforementioned quality indicators
which reflect quantified SLAM’s tracking self-assessment,
QL(x) and QV (x).

D. SLAM tracking quality self-assessment

A SLAM result quality indicator should be a measure of
SLAM’s inner “confidence” about its most recent result. If we
can find a common ground to calculate such an indicator for
both visual and LiDAR SLAMs, they can become comparable,
and thus we can quantify the quality level of the SLAMs’
respective results. We define three states of SLAMs’ tracking
quality which represent their self-estimate risk of error: low,
medium and high. These states are then used in the Online
SLAMs Fusion: data provided by one SLAM in low error-
risk state is thought to be more reliable than data provided by
another SLAM in medium or high error-risk state.

Both SLAMs employed in our system, InnoSLAM and
VINS-Fusion, are using non-linear minimisation problem solv-
ing [52] as the main method of finding the optimal solution
between estimated pose and observed data. We can therefore
use these already existing minimization processes to extract
the elements necessary for our quality indicators without
additional computations.

1) InnoSLAM: InnoSLAM feature types, Edge and Planar
points, are matched with its corresponding map by Point-
to-Line ICP and Point-to-Plane ICP respectively. Minimizing
the error functions of these ICP provides the transformation

between two pointclouds, and can be represented by the
equation:

T ∗(x) = arg min
T (x)

N∑
i=1

‖(QL
ω
i −QL

∗)ᵀ A (QL
ω
i −QL

∗)‖2

∈ SE(3)
(1)

where QL
ω
i = R(x)QLi + T(x) are the transformed feature

points, A = (I − EEᵀ) for Edge points and A = EEᵀ for
Planar points, where E is the eigenvector of the covariance
matrix QL

∗. The evolution of this matrix reflects the quality
of LiDAR SLAM’s result according to each degree of freedom.
We then used empiric thresholds in translation T(x) and
rotation R(x) to estimate the current state of InnoSLAM. We
analysed InnoSLAM behaviour in different situations to select
a set of consistent thresholds, we defined QLt < 0.025 m2 and
QLr < 0.05 rad2 as the low risk state, and QLt > 0.1 m2 and
QLr > 0.2 rad2 as the high risk state. The in-between is the
medium risk state.

2) VINS-Fusion: In the case of VINS-Fusion, the non-linear
problem concerns finding such parameters that the sum of
residual errors is minimised. The problem formulation for
the visual-inertial bundle adjustment (equation and notation
adopted from [53, eq. 26]) is:

X ∗k = arg min
Xk

(‖r0‖2Σ0
+

∑
(i,j)∈Kk

‖rIij‖2Σij
+

∑
i∈Kk

∑
l∈Ci

‖rCil‖2ΣC
)

(2)

Where Iij represent the set of IMU measurements acquired
between keyframes at times i and j; Cil represent image
measurement for landmark l in keyframe at time i. r0, rIij and
rCil are the residual errors associated to the measurements, and
Σ0, Σij and ΣC are the corresponding covariance matrices.
The residual errors can be seen as functions of system state
Xk, which quantify the mismatch between measured quantity
and the predicted value of this quantity given Xk.

However, these covariance matrices are decomposed and
hidden inside the optimization framework, and their extraction
requires additional computations. Therefore, the covariance-
based definition of states (like for InnoSLAM) can not be used
for VINS-Fusion. Instead we can use the resulting residual
errors, considering that the better the minimisation process
went (the lower are the residual errors), the more reliable are
the estimated values in the optimized state X ∗k .

Therefore, one can employ a synthetic function to quantify
the optimization result quality, using the residual errors and
their evolution as input, several thresholds for the output value
define the corresponding error risk state of the SLAM: low
residual error should yield high quality value (and low error
risk state), and vice-versa.

The choice of such a synthetic function is a matter of
heuristic and is guided by several criteria:
• It should be monotonically decreasing: larger residual

errors should lead to lower quality values;
• It should have at least one inflection point in order to have

three distinguishable regions: gradual descent for “low”
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Fig. 5. Synthetic function, producing quantitative self-evaluation of the
quality of visual SLAM’s state. Points QV 1(1; 0.95) and QV 2(5; 0.5)
serve as references to enable the computation of function’s parameters.

error-risk state, steep slope for “medium” error-risk state,
and a decreasing slope for “high” error-risk state.

Richard’s curve, known as generalized logistics function, is
a suitable candidate due to its three distinguishable regions
(notation partly adopted from [54]):

QV (x) = 1− 1

1 +D × exp (−B × (x−M))
(3)

Where x represents the mean camera-landmark residual
error rCil , — or, in more simple terms, reprojection errors
for the features observed in keyframes; and coefficients D, B
and M are used only to parametrize the curve.

The parameter values are dependent on the choice of two
reference points, QV 1 and QV 2 (see Fig. 5), for which we can
set our arbitrary values. E.g., for our most recent prototype,
we consider that any mean reprojection error less than 1 pixel
would imply that the system is very confident in the quality
of its results, providing first reference point QV (1) = 0.95.
However, if the mean reprojection error is higher than 5
pixels, the quality assessment should reflect this uncertainty,
providing the second reference point QV (5) = 0.5. The
computation of parameters with two arbitrary reference points,
QV 1 = (λ1, α1);QV 2 = (λ2, α2) in this case, becomes trivial:

M = λ1, D =
α1

1− α1
, B =

lnD − ln α2

1−α2

λ2 − λ1
We empirically define quality states of VINS-Fusion as:

QV > 0.75 for low risk of error, QV < 0.40 for high risk
of error, and the in-between for the medium risk of error.

The states of each SLAM are updated on each new data
input to ESKF, and different approaches can be used to keep a
robust pose estimation. First, we ignore the data from a SLAM
in high error-risk state if the other is in a more reliable state, so
it does not disturb ESKF process. Second, these indicators are
also used to reinitialize InnoSLAM’s maps if it encounters
errors while visual SLAM is in a stable state, in order to
keep InnoSLAM’s maps consistent. And third, whenever both
SLAMs are in the medium risk state, the covariance matrix
of the higher risk value SLAM is boosted to favor the SLAM
with the lowest risk of error in the fusion process.

E. Loop closure and external pose indication
Visual SLAMs are known for their relocalization/loop clo-

sure technique: confident recognition of previously visited
places, which can be used to rectify trajectories and even
recover from tracking failures. However, the robust real-time
loop closure detection task remains an open problem for
LiDAR-based SLAM (see survey [55] on the topic). Therefore,
each time a loop detection in visual SLAM happens, we
can generate an event with corresponding data, LCV (x) (set,
consisting of differential 6D-pose ∆pWL

i/j between matched
keyframes Ci and Cj , converted to InnoSLAM’s relative
world reference frame, as well as the indications of matched
keyframes — i and j keyframe indices and timestamps), to be
sent to InnoSLAM.

From another point of view, a weak point in visual SLAM is
the failure recovery strategy: relocalization is not always pos-
sible, and auto-resetting the tracking usually destroys the map
and previous trajectory. One can imagine a ”re-initialization”
procedure – after visual tracking is lost, a new tracking should
be initialized automatically based on previously measured mo-
tion model while preserving the already acquired trajectories
and maps and hence improving the system’s tolerance to
failures. However, such an approach [10] is mostly suitable for
ORB-SLAM-like approaches, where tracking failure happens
due to lack of matched features. In VINS-like approaches,
tracking failure happens when the bundle adjustment diverges
and compensates the errors by abnormally large biases or
velocities. In this case, the last known motion model is already
erroneous, and cannot be used as a motion hypothesis during
re-initialization. Thus, we can use externally provided data
(the last known fusion’s output 6D-pose, converted to visual
SLAM’s relative reference frame, piWV ) as a re-initialization
starting pose, while leaving previous trajectory and map un-
changed, allowing future loop closures.

V. RESULTS

To evaluate the accuracy of our system, we have planned a
trajectory passing through waypoints identified and geolocated
on a cadastral map. Such waypoints have an uncertainty
of about 30 cm in longitude and latitude and about 10° in
orientation with respect to the true North. The trajectory
includes difficulties not managed by state-of-the-art SLAM
algorithms, like crawling in a hallway on several meters,
walking sideways in front of a uniform wall, climbing stairs
in total darkness forward and backward, carrying an object
in the field of view of sensors (making it a static object in
a dynamic environment), running and jumping off stairs, and
indoor/outdoors transitions.

Fig. 6a reflects InnoSLAM and VINS-Fusion trajectories
on a real-time 950 m run bounded by 4 geolocated waypoints,
numbered from 1 to 6 according to the order these points
were crossed during the run. Waypoints 3, 4 & 6 represent
the same location crossed three times with distinct orienta-
tions. The followed path features indoor / outdoor transitions,
doors crossings, long hallways with uniform walls and floors,
stairs with various lighting conditions and a small room with
mirrors. Both SLAMs failed several times during the run. VI-
SLAM failed three times in long hallways, most notably when
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pointing a fake weapon in front of the camera creating more
stationary points than the few feature points on the walls, floor
or ceiling. It’s first fail was recovered after climbing stairs in
which InnoSLAM first failed because of the lack of horizontal
features in the stairs compared to the vertical features on the
walls. VI-SLAM second hallway fail happened before entering
a small room with mirrors on walls, where InnoSLAM drifted
by several degrees. In this case InnoSLAM most likely failed
due to the exiguity of the room rather than the presence of
mirrors since minimum range of the LiDAR was set to 50 cm.
InnoSLAM encountered no issue during the last hallway fail
of VI-SLAM, but failed while being outdoor. This can happen
when few geometric features are available, like in an open
field. InnoSLAM got an error of several degrees in orientation
due to this fail.

Due to multiple orientations, only one loop closure at
waypoint (3-4-6) was detected during the run shown in Fig. 6a
and Fig. 6b. Multiple crossings of waypoints (2) and (5)
happened at different levels of the building. Specific geometric
patterns paths have been followed: an “L”-shaped pattern can
be seen between waypoints (3-4-6) and (5), and another one
composed of 2 right triangles can be seen below waypoint (5).
These geometric patterns can be used to assess position and
orientation drifts.

Fig. 6b illustrates results of the real-time fusion between
SLAMs on the run. One can notice that none of the individ-
ual SLAMs trajectories are accurately estimated whereas the
fusion process produces a consistent trajectory.

A. Online Localization
To assess the estimation quality, we adopted from [49] the

absolute trajectory error (ATE) without pre-alignment (due to
usage of global reference frame) for pose estimations at each
waypoint. Fig. 7 shows individual SLAMs, Fusion and GPS
trajectory errors compared to geolocated waypoints (1) to (6).
At the end of the run, we get an ATE = 4.59 m (see Fig. 7),
which is 0.48% of the total traveled distance of 950 m, and
never exceeds 1.1% during the run. The root mean square
error (RMSE) is 3.14 m. Regarding orientation, we obtained
an ATE = 3.3° at the end and RMSE = 8.46°. Our previous
work [9] used a much more resource heavy approach and
mentioned similar results, with a positional ATE of 0.41%
computed over a 185 m sub-section of the run featuring only
in-building navigation and indoor / outdoor transitions. While
errors accumulate over time and traveled distance, they may
be corrected with loop closures.

Fusion update is triggered by the IMU at a 200 Hz rate,
InnoSLAM mean correction rate occurs at 15 to 20 Hz, Visual-
SLAM mean correction rate occurs at 8 to 10 Hz processing
only 1 frame out of 3 to preserve computational resources. Due
to the terms of the MALIN challenge, fusion pose is recorded
to file at 5 Hz and radio-transmitted at 0.5 Hz.

B. Offline Mapping
Same as in [9], generated 3D pointclouds of visited build-

ings are post-processed to obtain a reconstruction at three
different Level Of Details (LOD). For levels 0 (LOD0) and

(a) InnoSLAM (green) and VINS-Fusion (red) separate trajectories: view from
atop

(b) Estimated trajectory (red) from Fusion process and detected map features
(light blue): views from atop and in trimetric projection

Fig. 6. 950m run with several difficulties as presented over a cadastral
plan (Buildings in yellow, other topographic lines in gray. Waypoints are
indicated with blue dots.)
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Fig. 7. Absolute Trajectory Errors (ATE) obtained before and after
fusion, on estimated position and orientation, along a 950 meters
trajectory based on known cadastral waypoint localization. GPS errors
are also represented with their standard deviations when GPS was
available.

1 (LOD1), a random forest classification method [56] is
employed for segmenting planes in the pointcloud. Detected
planes belongs to walls, ceilings and floors. For LOD0, 3D
points belonging to walls are isolated and projected on their
principal plane (estimated by PCA). For LOD1, we optimize
over the intersection of all detected planes using the kinetic
algorithm [57]. Finally, for level 2 (LOD2), we perform a
triangulation over the 3D points using Poisson reconstruction.
Most of the process has been automatized in order to respect
the terms of the MALIN challenge to a 3D map reconstruction
under 10 minutes. Therefore, we have performed LOD0 and
LOD1 reconstruction levels for the results of this paper. In [9]
we have presented an offline LOD2 reconstruction of a similar
scenario where we could post-process the input pointclouds
without a time limit constraint.

VI. CONCLUSION

In this work, we proposed a wearable cooperative SLAM
system to localize emergency response agents in real-time
across challenging environments and also produce a map
of the visited environment. The first part of this article is
dedicated to hardware and software studies in order to meet
the requirements of the MALIN challenge in terms of in-
door/outdoor navigation and mapping. A map, with high level
of detail can be obtained through LiDAR acquisitions. We
have chosen a cooperative approach between the SLAMs in
order to obtain a robust navigation that can take advantage of
the strengths of each approach as illustrated in the second
part. Several points were investigated to ensure the best
possible cooperation between LI-SLAM and VI-SLAM such
as the propagation of loop closures, poses fusion assisted by

Fig. 8. Offline mapping of evaluation scenario with levels of details (up
to LOD1), as seen in trimetric projection. Initial 3D pointclouds are rep-
resented in blue. Pink volumes show buildings’ models reconstruction,
and black lines shows partial indoor/outdoor floorplans.

quality indicators and fusion pose re-initialization assistance
whenever one of the SLAMs fails. The system proposed in
this article represents the current state of our incremental
research. However, improvements are possible, in particular,
concerning homogenization of the quality indicators, and also
concerning the optimizations performed by each SLAM which
could benefit from a common optimization to save computing
resources. Mutual support between SLAMs can further be
enhanced by providing them with the same capabilities such
as loop closure which is still an open problem with LiDAR
data.
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requirements for localization and tracking technology: A survey of
mission-specific needs and constraints,” in 2010 International Confer-
ence on Indoor Positioning and Indoor Navigation. IEEE, 2010, pp.
1–9.

[30] A. F. G. G. Ferreira, D. M. A. Fernandes, A. P. Catarino, and J. L. Mon-
teiro, “Localization and positioning systems for emergency responders:

A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2836–2870, 2017.

[31] G. M. Mendoza-Silva, J. Torres-Sospedra, and J. Huerta, “A meta-review
of indoor positioning systems,” Sensors, vol. 19, no. 20, p. 4507, 2019.

[32] J. Rantakokko, J. Rydell, P. Strömbäck, P. Händel, J. Callmer,
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